Drivers of Macroalgal Dynamics within Halodule Seagrass Beds

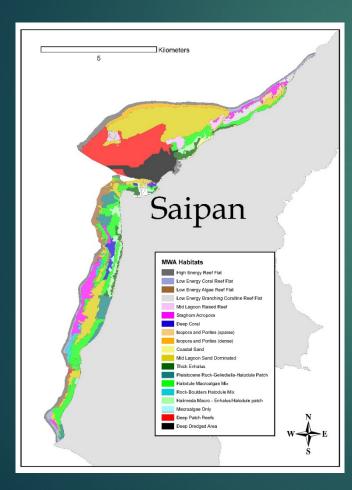
MSc Thesis Defense Rodney C. Camacho

Thesis Committee: Dr. Peter Houk (chair/member) Dr. Jason Biggs (member) Dr. Tom Schils (member) Dr. Ryan Okano (outside <u>member)</u>

Outline

- Study site Saipan lagoon
 - Challenges and Key Questions
- Seagrass habitats
 - Global trends and key functions
- History of studies in the Saipan Lagoon
- Thesis objectives
- Methods
- Results
- Summary and Discussion
 - Evidence for similar seasonal trends
 - Elsewhere and in Saipan
 - Management

Saipan Lagoon



Habitat-forming seagrasses in the Saipan lagoon

Halodule uninervis

Enhalus acoroides

Saipan Lagoon

Filters land-based pollution

Challenges and Key Questions

- Are current landuse patterns ?
- Can temporal trends and seasonal cycles be reconciled?

- Seasonal cycles?
- Change over time?

Outline

- Study site Saipan lagoon
 - Challenges and Key Questions
- Seagrass habitats
 - Global trends and key functions
- History of studies in the Saipan Lagoon
- Thesis objectives and hypotheses
- Methods
- Results
- Summary and Discussion
 - ▶ In Saipan
 - Beyond Saipan
 - Management

Seagrass habitats globally in decline (spatial coverage and integrity)

What is going on with seagrass globally and why?

- Eutrophication
- Direct exploitation
- Meta-analysis examining global trends in seagrass

Table 1. Percentage rate of change for seagrass meadows globally

Trajectory*	Median % rate of change, μ (N)	Proportion in category, %	Mean % rate of change, μ (±SE, N)	Net maximum measured area, km²	Net change in study areas, km ² (% of maximum)	Mean study length, yr
Declining	-3.7 (126)	58	-6.9 (±0.9, 116)	9,147	-3,662 (40)	25
Increasing	5.4 (53)	25	11.8 (±3.6, 43)	879	314 (36)	20
No detectable change	-0.06 (36)	17	-0.2 (±0.2, 36)	1,565	-19 (1)	14
Overall	-0.9 (215)	100	-1.5 (±1.1, 196)	11,592	-3,367 (29)	22

Rate of change expressed as μ , % yr⁻¹.

*Meadows were categorized as declining (<90% of initial area), increasing (final area >110% of initial area), or having no detectable change (final area within ±10% of initial area).

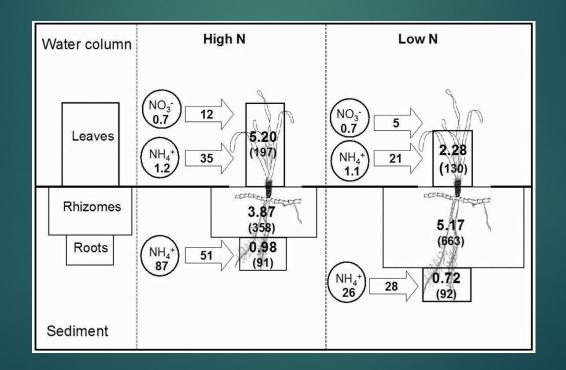
Between 1879 and 2006, there was a 29% loss of seagrass habitat.

Waycott et al. 2009 PNAS

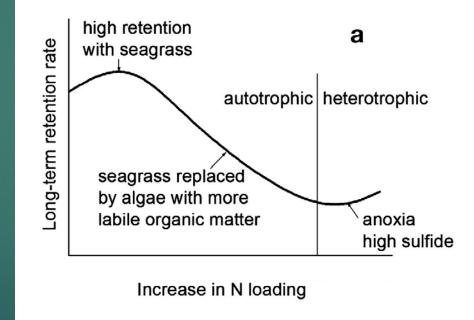
Global concerns about seagrass habitat decline

- Functional roles of seagrass habitats
 - Filtering nutrients and driving the rates of nutrient releases to ecosystem
 - Stabilization of substrates and shorelines
 - Habitat provisioning for fish and macro-invertebrates

Simplified view of seagrass and nutrients

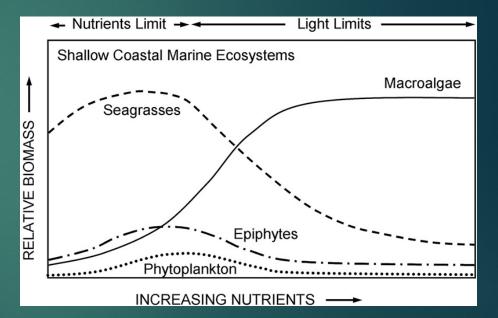

Seagrass habitats change nearshore nutrient dynamics

From pulsed nutrients... to slow and continuous release


Evidence of nutrient uptake

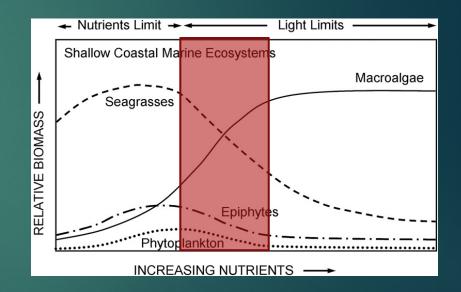
Accumulation above and below ground, key difference from most macroalgae

Nutrient dynamics, in turn, can control assemblage dynamics



McGlathery et al. 2007 MEPS

So, water quality represents an influential driver



Starts with nutrient uptake, Ends with community dynamics

Burkholder et al 2007

But, nutrients are pulsed events and assemblages shift over time

- In reality, the transition is not smooth
- Environmental 'noise' can emerge from seasonal cycles (rainfall, etc.)
- True temporal change can take years

Natural factors that influence the growth dynamics of macroalgae/seagrass

Seasonal

- Rainfall and sea-surface temperature
- Extreme tidal cycles (also linked with temperature)
- Storms and disturbance events
- Nature of watershed discharge
 - Groundwater
 - Surface runoff

All of these can potentially limit our ability to detect temporal trends

Outline

Study site – Saipan lagoon
Challenges and Key Questions
Seagrass habitats
Global trends and key functions
History of studies in the Saipan Lagoon

- Thesis objectives and hypotheses
- Methods

Results

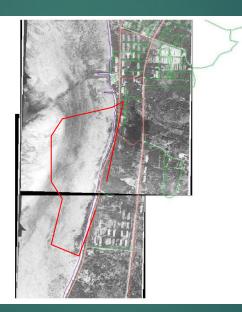
- Summary and Discussion
 - ▶ In Saipan
 - Beyond Saipan
 - Management

Historical studies in the Saipan lagoon

Starting in 1950's after WWII

- US Geological survey commissioned habitat mapping
- UOGML two key technical reports looking at fish and sea cucumber abundances
- Work comparing habitat maps between 1950's and present
- Recent work examining seasonal dynamics at small spatial scales

Evidence from the past


Prior to historical maps

1945

Heavy watershed development, extensive submerged aquatic vegetation evident

Historical maps

1956

Lower watershed development after WWII, lagoon returned to mostly sand

Contemporary maps

2013

Growing watershed development, lagoon once again becoming dominated by submerged vegetation

Outline

Study site – Saipan lagoon Challenges and Key Questions Seagrass habitats Global trends and key functions History of studies in the Saipan Lagoon Thesis goals Methods Results Summary and Discussion

- ▶ In Saipan
- Beyond Saipan
- Management

Thesis goals

Examine if seasonal dynamics suggested by smaller-scale seagrass plots are consistent across a larger scale of investigation

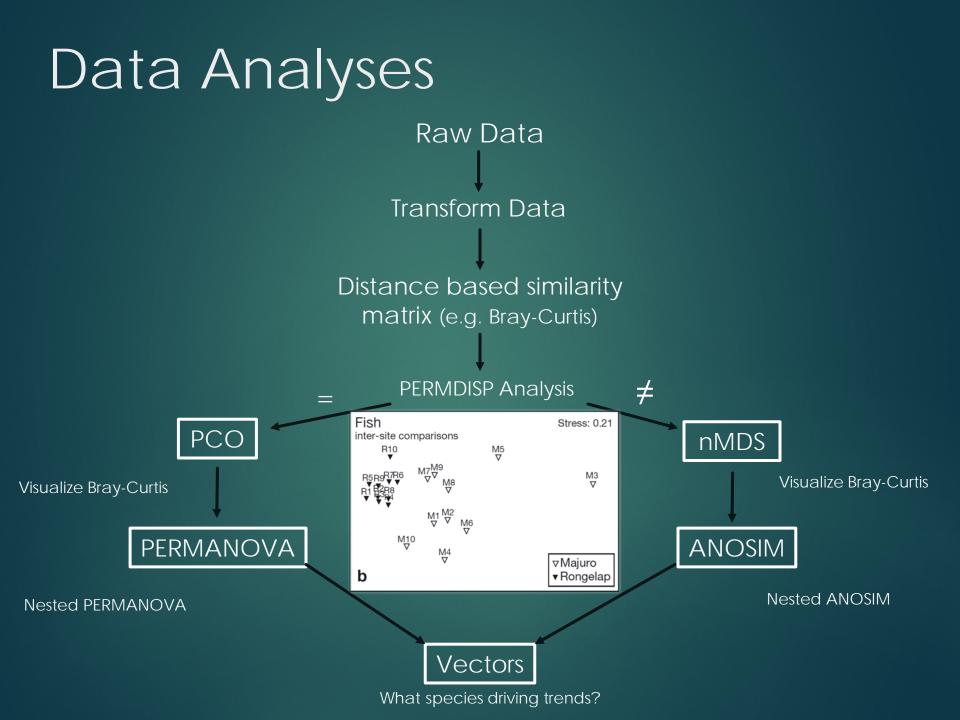
Use the improved understanding of seasonal dynamics to evaluate trends in macroalgal canopy cover with respect to watershed characteristics and environmental factors

Outline

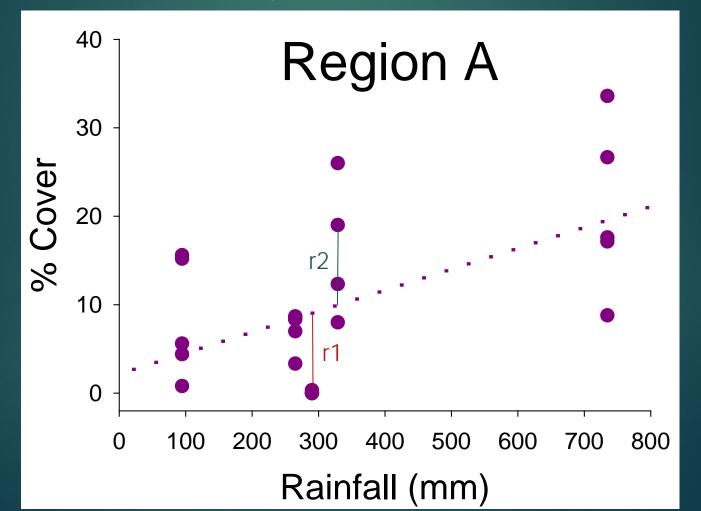
Study site – Saipan lagoon
Challenges and Key Questions

- Seagrass habitats
 - Global trends and key functions
- History of studies in the Saipan Lagoon
- Thesis objectives and hypotheses
- Methods
- Results
- Summary and Discussion
 - ▶ In Saipan
 - Beyond Saipan
 - Management

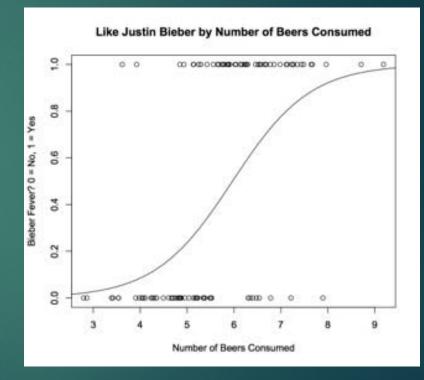

Data Collection


Benthic Substrate

- ► 5 x 50m transects
- Photo quadrats
 - Canopy cover
- 250 points per transect
- Similar methods over 13 years



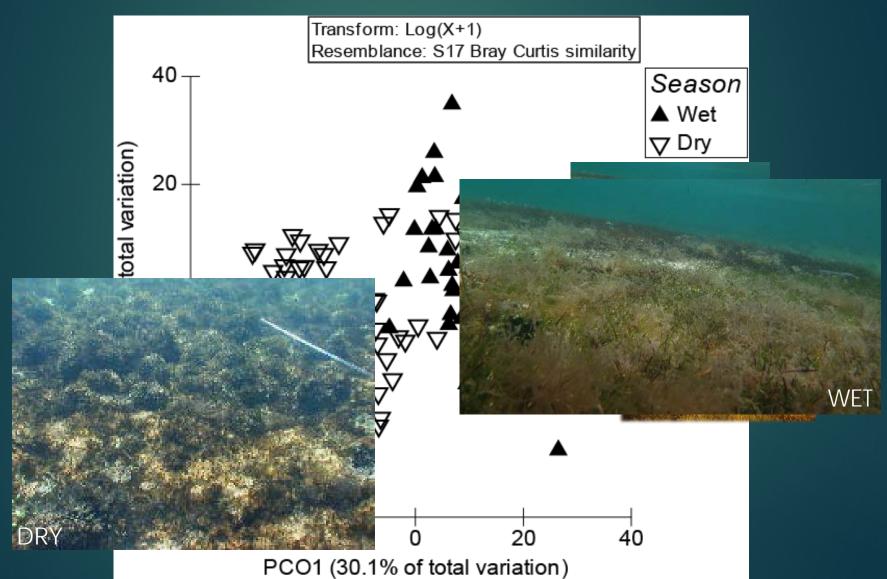
(Lirman et al., 2008, Hydrobiologia)


Forward Stepwise Models

Im(red algae~rainfall) example

Other Models/Tests

- ANOVA/post-hoc tests for time series
- Binomial Models
 - Logistic regression

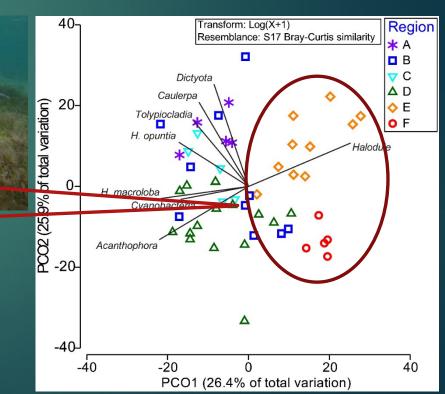


Outline

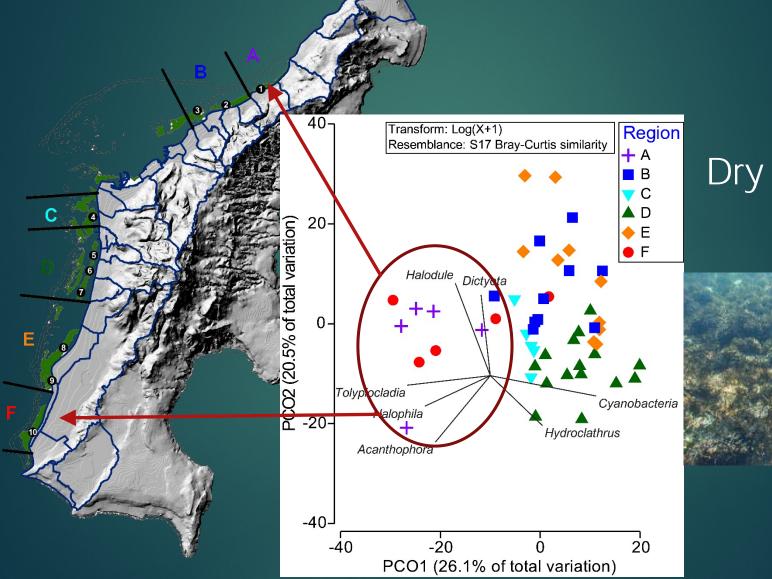
Study site – Saipan lagoon Challenges and Key Questions Seagrass habitats Global trends and key functions History of studies in the Saipan Lagoon Thesis objectives and hypotheses Methods Results Summary and Discussion

- ▶ In Saipan
- Beyond Saipan
- Management

Seasonal Changes



Spatial differences within each

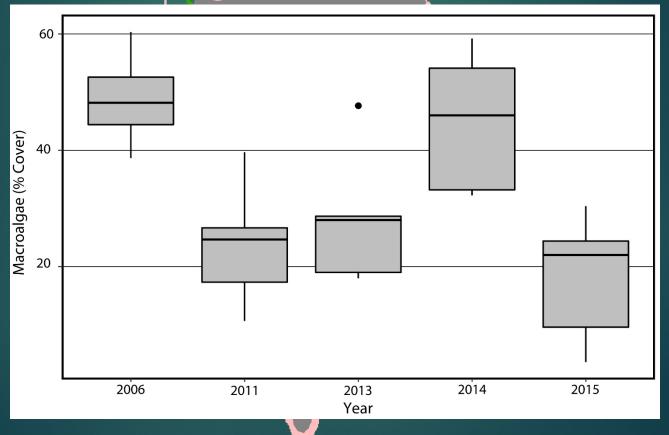

C

season

Wet Season

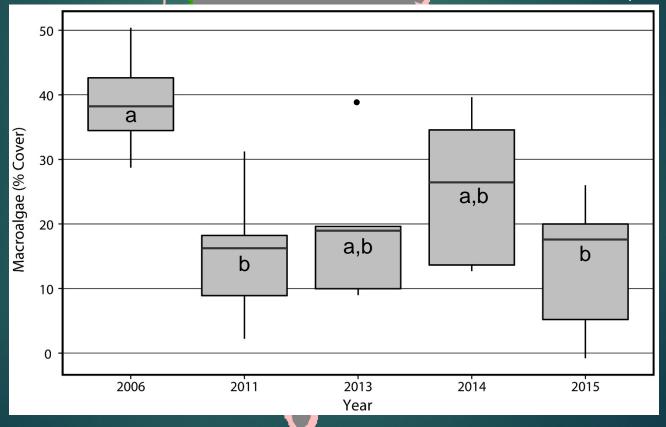
Spatial differences within each season

Dry Season

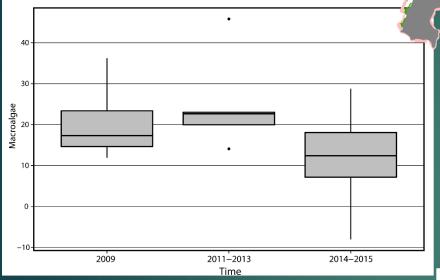


Removal of seasonal variance

Region	Site	Model	Slope (SE)	P- value
А	1	Im(red~rainfall)	0.02 (0.008)	0.005
В	2 and 3	lme(log(bg+1)~sst, random= ~1 site)	-0.69 (0.14)	0
		Ime(log(red+1)~rainfall, random= ~1 site)	2.0 E ⁻³ (1.0 E ⁻³)	0.01
с	4 and 5	Ime(log(bg+1)~sst, random= ~1 site)	-0.69 (0.14)	<0.0001
		Ime(log(red+1)~rainfall, random= ~1 site)	3.0 E ⁻³ (1.0 E ⁻⁴)	0.001
		lme(log(brown+1)~sst, random= ~1 site)	0.88 (0.13)	0
D	6 and 7	lm(bg~sst)	-11.33 (1.96)	<0.0001
		lm(log(red+1)~rainfall	3.0 E ⁻³ (5.0 E ⁻⁴)	<0.0001
E	8 and 9	Ime(log(green+1)~gw, random= ~1 site)	-0.06 (0.11)	<0.0001
		lme(log(brown+1)~gw, random= ~1 site)	-0.23 (0.11)	0.05
		lm(log(bg+1)~sst)	-0.63 (0.18)	<0.001
F	10	lm(green~rainxgw)	4.19 (0.75)	<0.0001
		lm(log(brown+1)~rainxgw)	0.27 (0.06)	<0.0001

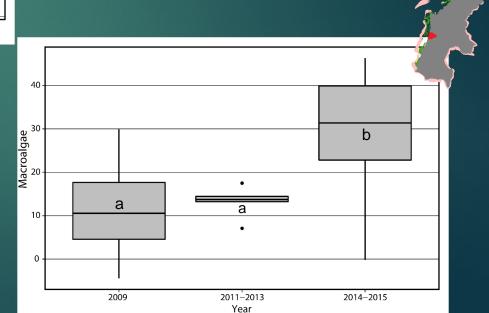

Normal values

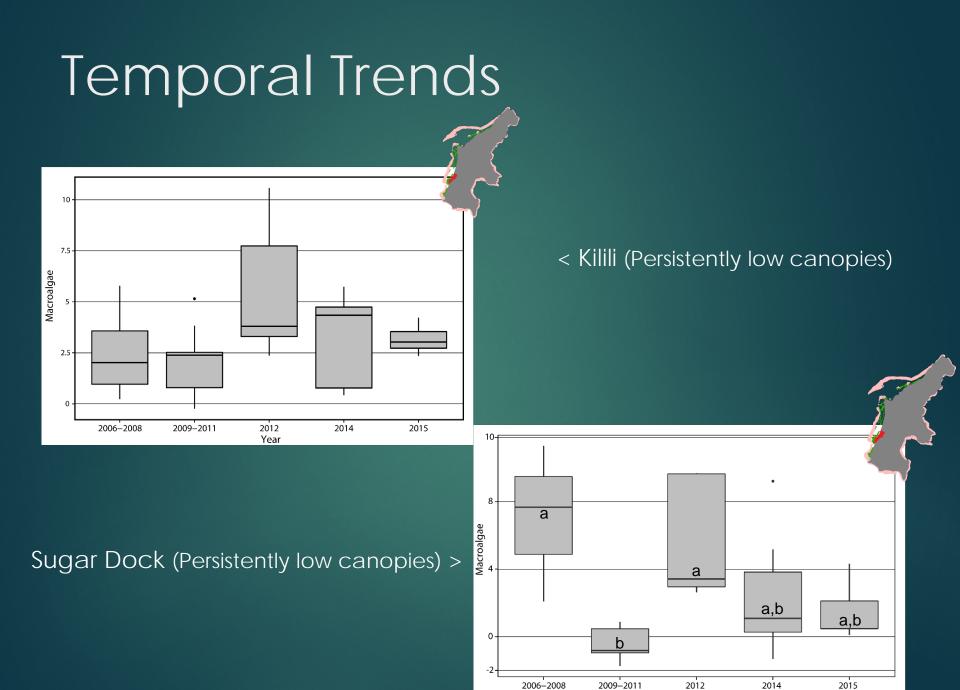
San Roque



Adjusted values

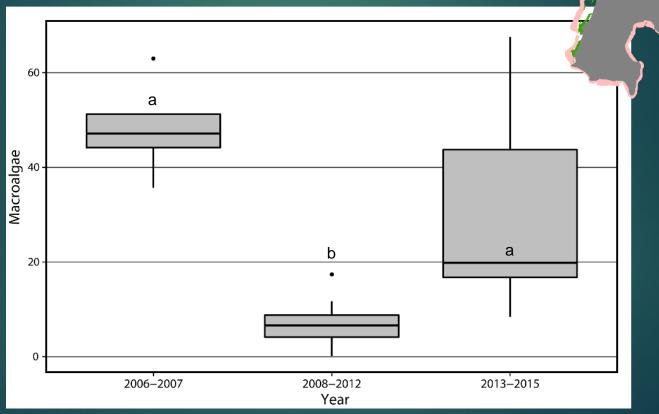
San Roque




Temporal trends

< 13 Fisherman (persistently high cover)

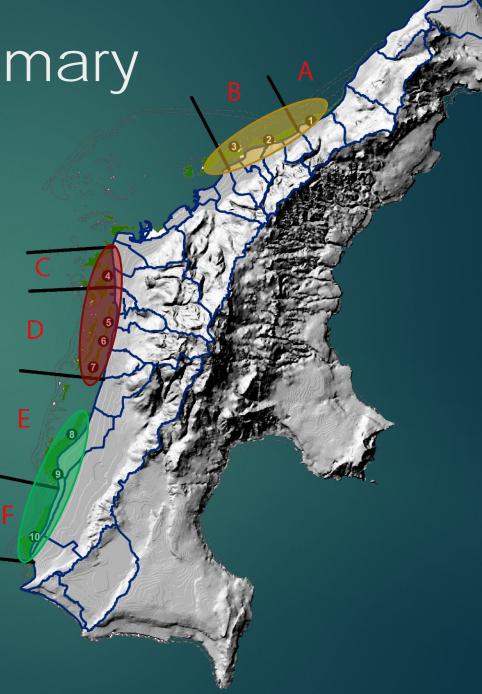
Quartermaster (significant increase) >



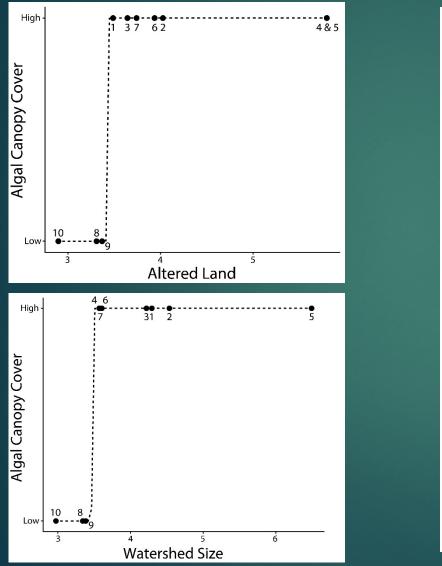
Year

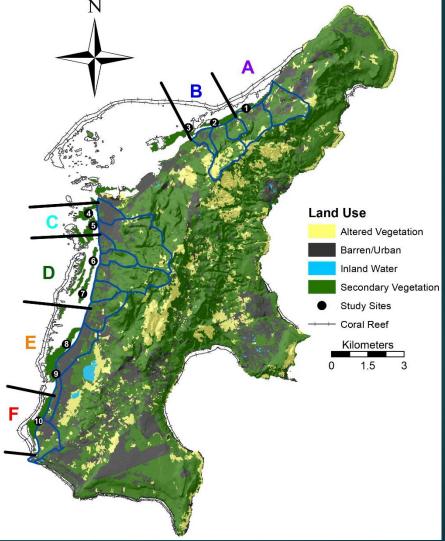
Temporal trends

Iguel Ranch (Disturbance mediated)

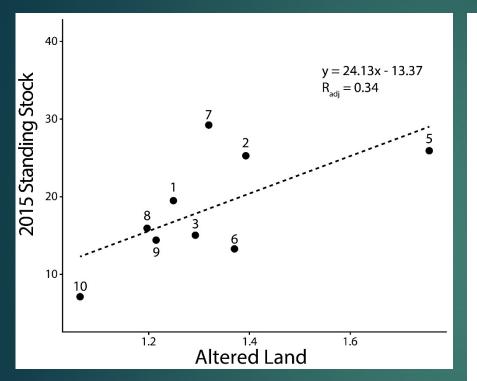

Furthering Houk and Camacho 2010, Bot Mar

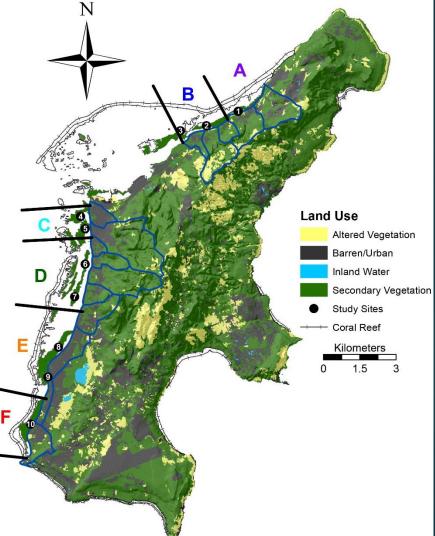
Temporal Summary


Red – Consistent High algal cover or significant increases in cover (2015 >20%)


Yellow – Disturbance mediated (2015 >20%)

Green – Consistently low algal cover (2015 ≤10%)



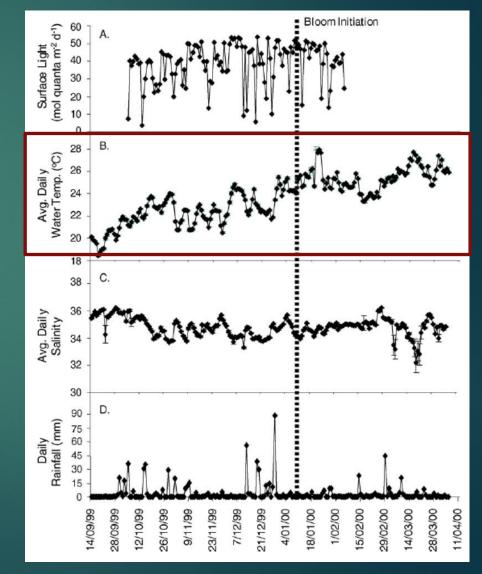

Binomial Models

2015 Cover

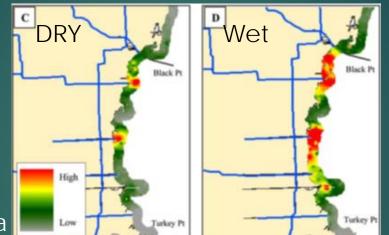
Outline

Study site – Saipan lagoon
Challenges and Key Questions

- Seagrass habitats
 - Global trends and key functions
- History of studies in the Saipan Lagoon
- Thesis objectives and hypotheses
- Methods
- Results
- Summary and Discussion
 - Evidence for seasonal trends
 - Elsewhere and in Saipan
 - Management


BG and SST

Watkinson et al 2005

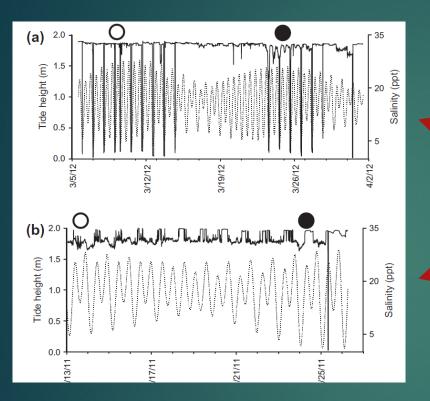

Water temperature is one key factor in promoting the growth of blue-green algae

Eldredge & Center 1983

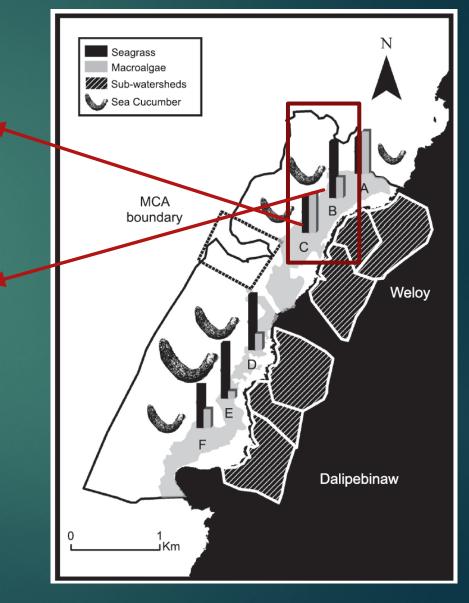
- Cooler waters in Saipan contain higher concentrations of dissolved N and P
- Water temperature and nutrient concentrations individually or in combination promote BG growth

Seasonal effects - Rainfall

Biscayne Bay, Florida

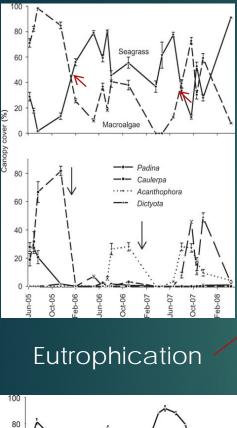

Table 3 Percent cover (S.D.) and percentage of sites where SAV was found in Western Biscayne Bay in the 2005 Dry (March-April) and Wet (July-August) seasons

	% Sites dry season	% Sites wet season	% Cover dry season	% Cover wet season	P values
T. testudinum	68	63	19.9 (28.0)	19.2 (28.3)	ns
H. wrightii	38	50	1.4 (8.3)	4.0 (13.2)	< 0.01
S. filiforme	15	21	4.2 (9.8)	5.2 (12.2)	< 0.05
R. maritime	4	5	0.03 (0.2)	0.01 (0.1)	ns
Attached algae	64	66	4.0 (10.4)	29.0 (33.4)	< 0.01
Drift algae	69	43	12.5 (18.7)	4.4 (10.4)	< 0.01
Seagrass	78	80	25.5 (30.1)	28.4 (30.8)	ns
Macroalgae	77	74	16.5 (20.8)	33.4 (35.5)	< 0.01


The mean cover of each taxon was compared between the dry and wet seasons using a *t*-test. ns = no significant differences between seasons. n = 240 sites each season

Lirman et al., 2008 HYDROBIOLOGIA

Groundwater


Groundwater appears to influence macroalgal and seagrass dynamics within Thalassia habitats

Saipan lagoon studies

Altered land and watershed size predicted a ratio of seagrass-to-macroalgae (Houk and Van Woesik, 2008 MEPS)

	Watershed Size		Watershed Development		Surface Current Velocity			Lagoon Width				
	Step #	Beta (SE)	R ² (P- Value)	Step #	Beta (SE)	R ² (P- Value)	Step #	Beta (SE)	R ² (P- Value)	Step #	Beta (SE)	R ² (P- Value)
Enhalus (n=7)	1	.16	.91						2	.05	.96	
		(.03)	(<.001***)								(.03)	(.001**)
Halodule (n=14)				2	.06	.74	1	15	.63			
			2		(.03)	(<.001***)		(.03)	(<.001***)			
Seagrass Total (n=14)				2	.15	.82	1	19	.51			
Scaglass 10(a) (11-14)					(.03)	(<.001***)		(.05)	(.004**)			
Halodule / Macroalgae Ratio (n=10)	3	.35	.8		36	.43		38	.69			
		(.23)	(. <i>016*</i>)	(.16)	(.039 *)	2	(.19)	(.017*)				

60

40

0

60

40

20

Jun-05 Oct-05 Jun-06 Cot-06 Cot-07 Teb-07 Cot-07 Cot-07 Cot-07 Cot-07 Cot-05 Cot-05

@ 20

cover

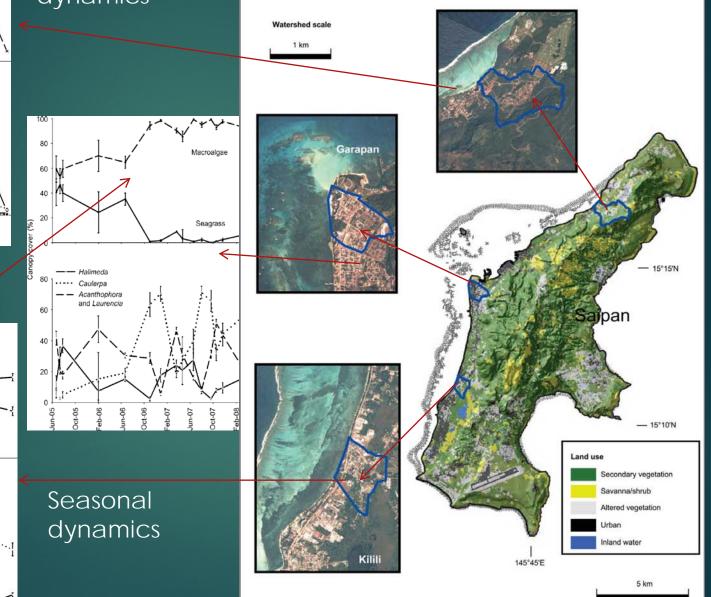
Canopy

Seagrass

Macroalgae

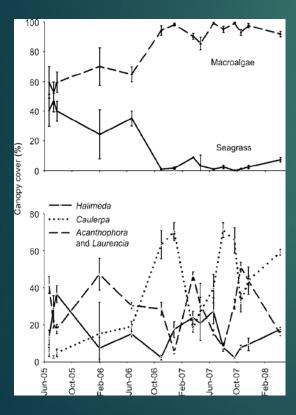
Halimeda

····· Tolypiocladia

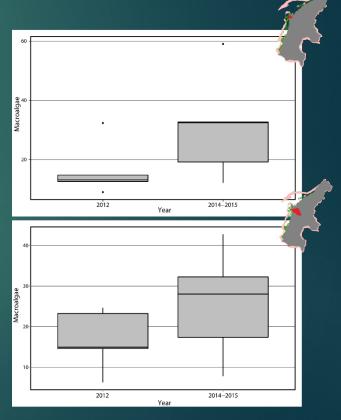

Caulerpa

Acanthophora

 \overline{A}


Disturbance-mediated dynamics





Synthesis

 Spatial patterns consistent for a decade, meanwhile algal canopies have been increasing

Lingering seasonal cycles with watershed pollution

Science-to-management

Science to watershed working groups

Identify and prioritize regions Where to focus limited \$ and capacity?

Thank you funders, monitoring partners, and committee

Thesis Committee: Dr. Peter Houk (chair/member) Dr. Jason Biggs (member) Dr. Tom Schils (member) Dr. Ryan Okano (outside member)

Thank You QUESTIONS OR COMMENTS

Variables

Watershed Characteristics

- Watershed size
- Altered land area
- Watershed load
- Population

Environmental Factors

- Bacteria violation counts
- Surface current velocities
- Site to drainage distance
- Site to shore distance
- Site to reef distance
- Lagoon width

Key Questions

What are the major effects of seasonal cycles?

- How has the Saipan lagoon been changing through time?
- Are current watershed land-use patterns contributing to temporal change?
- Can temporal trends and seasonal cycles be reconciled?

Answers help align management with science

Questions

Seasonal cycle?

Same throughout the lagoon?

Change through time

- Seasonal and spatial trends present
- Cover of algal the same through time

Causes

- Watershed characteristics
- Environmental factors

Hypotheses (Seasonal dynamics)

H0₁: Macroalgal canopy cover within Halodule beds across wet and dry seasons does not differ

Falsified if multivariate test of comparison for canopy cover show differences.

 If significant differences are found, species-based correlations with PCO axes will be utilized

Hypotheses (Seasonal dynamics)

H0₂: Macroalgal canopy cover within each season does not differ spatially across the lagoon

Falsified if multivariate test of comparison for canopy cover show differences.

 If significant differences are found, species-based correlations with PCO axes will be utilized

Hypotheses (Temporal)

H0₃: Seasonal and spatial trends were not persistent through time

Falsified if linear models support that relationships between seasonal and environmental factors and macroalgal canopies exist

Given significant linear models, the variance of seasonality will be removed by taking the residuals from the forward stepwise regression.

Hypotheses (Temporal)

H0₄: The persistence of the macroalgal canopies have been consistent through time across the study regions

Falsified if ANOVA tests find significant differences macroalgal canopies through time

If significant, post-hoc tests to determine which time frames are different within each region

Hypotheses (Causative)

H0₅: Locations with persistently high or significantly increasing macroalgal canopy cover are not related to watershed characteristics or environmental factors associated with each site

This will be proven false if binomial models predict high macroalgal states are related to watershed characteristics or environmental factors

If significant, current macroalgal canopies will be examined using linear models with the same watershed characteristics or environmental factors